Matrices
>>> from sympy import *
>>> init_printing(use_unicode=True)
In Julia
:
- In
SymPy
, matrices can be store usingJulia
's genericMatrix{T}
type whereT <: Sym
or using SymPy's matrix type, wrapped in aSymMatrix
type bySymPy
. This tutorial shows how to use the underlyingSymMatrix
values. To construct a matrix of symbolic values is identical to construction a matrix of numeric values withinJulia
, and will be illustrated at the end.
methods for
SymMatrix
objects use the dot call syntax. As a convenience, this will also work forArray{Sym}
objects. The returned value may be aSymMatrix
, not anArray{Sym}
.The matrix constructor in SymPy using a vector of row vectors does not work in
SymPy
, as of newer versions (it does not work with version 1.5.1 of sympy and PyCall). This style is used in this document. The user ofSymPy
can eaesily avoid this specification, using Julia's matrix construction techniques.
julia> using SymPy
julia> using LinearAlgebra
To make a matrix in SymPy, use the Matrix
object. A matrix is constructed by providing a list of row vectors that make up the matrix. For example, to construct the matrix
\[~ \left[\begin{array}{cc}1 & -1\\3 & 4\\0 & 2\end{array}\right] ~\]
use
>>> Matrix([[1, -1], [3, 4], [0, 2]])
⎡1 -1⎤
⎢ ⎥
⎢3 4 ⎥
⎢ ⎥
⎣0 2 ⎦
In Julia
:
- In
Julia
, theMatrix
constructor is not exported, so must be qualified. Here we avoid the vector of row vectors above:
julia> sympy.Matrix([1 -1; 3 4; 0 2])
3×2 Matrix{Sym}:
1 -1
3 4
0 2
However, through the magic of PyCall
, such matrices are converted into Julia
matrices, of type Array{Sym}
, so the familiar matrix operations for Julia
users are available.
In fact, the above could be done in the more Julia
n manner through
julia> Sym[1 -1; 3 4; 0 2]
3×2 Matrix{Sym}:
1 -1
3 4
0 2
using an annotation to ensure the type. Alternatively, through promotion, just a single symbolic object will result in the same:
julia> [Sym(1) -1; 3 4; 0 2]
3×2 Matrix{Sym}:
1 -1
3 4
0 2
To make it easy to make column vectors, a list of elements is considered to be a column vector.
>>> Matrix([1, 2, 3])
⎡1⎤
⎢ ⎥
⎢2⎥
⎢ ⎥
⎣3⎦
In Julia
:
For this use, sympy.Matrix
does work, but again its usage is discouraged:
julia> sympy.Matrix([1, 2, 3])
3×1 Matrix{Sym}:
1
2
3
- Again, this is converted into a
Vector{Sym}
object or entered directly:
julia> Sym[1,2,3]
3-element Vector{Sym}:
1
2
3
As shown, it is better to avoid the sympy.Matrix
constructor when possible, and when not, only pass in a symbolic array created through Julia
's array semantics.
Matrices are manipulated just like any other object in SymPy or Python.
>>> M = Matrix([[1, 2, 3], [3, 2, 1]])
>>> N = Matrix([0, 1, 1])
>>> M*N
⎡5⎤
⎢ ⎥
⎣3⎦
In Julia
:
- In
Julia
, matrices are just matrices, and inherit all of the operations defined on them:
julia> M = Sym[1 2 3; 3 2 1]
2×3 Matrix{Sym}:
1 2 3
3 2 1
julia> N = Sym[0, 1, 1]
3-element Vector{Sym}:
0
1
1
julia> M*N
2-element Vector{Sym}:
5
3
One important thing to note about SymPy matrices is that, unlike every other object in SymPy, they are mutable. This means that they can be modified in place, as we will see below. The downside to this is that Matrix
cannot be used in places that require immutability, such as inside other SymPy expressions or as keys to dictionaries. If you need an immutable version of Matrix
, use ImmutableMatrix
.
In Julia
:
A distinction is made between ImmutableMatrix
and a mutable one. Mutable ones are mapped to Julia
arrays, immutable ones are left as a symbolic object of type SymMatrix
. The usual infix mathematical operations (but not dot broadcasting), 0-based indexing, and dot call syntax for methods maay be used with these objects.
Basic Operations
Shape
Here are some basic operations on Matrix
. To get the shape of a matrix use shape
>>> M = Matrix([[1, 2, 3], [-2, 0, 4]])
>>> M
⎡1 2 3⎤
⎢ ⎥
⎣-2 0 4⎦
>>> M.shape
(2, 3)
In Julia
:
julia> M = Sym[1 2 3; -2 0 4]
2×3 Matrix{Sym}:
1 2 3
-2 0 4
julia> M.shape
(2, 3)
Or, the Julia
n counterpart:
julia> size(M)
(2, 3)
Accessing Rows and Columns
To get an individual row or column of a matrix, use row
or col
. For example, M.row(0)
will get the first row. M.col(-1)
will get the last column.
>>> M.row(0)
[1 2 3]
>>> M.col(-1)
⎡3⎤
⎢ ⎥
⎣4⎦
In Julia
:
- these 0-based operations are supported:
julia> M.row(0)
1×3 Matrix{Sym}:
1 2 3
julia> M.col(-1)
2×1 Matrix{Sym}:
3
4
The more familiar counterparts would be:
julia> M[1,:], M[:, end]
(Sym[1, 2, 3], Sym[3, 4])
Deleting and Inserting Rows and Columns
To delete a row or column, use row_del
or col_del
. These operations will modify the Matrix in place.
>>> M.col_del(0)
>>> M
⎡2 3⎤
⎢ ⎥
⎣0 4⎦
>>> M.row_del(1)
>>> M
[2 3]
In Julia
:
These methods do not work on Array{Sym}
objects, use Julia's
indexing notation to remove a row or column.
However, these methods do work on the ImmutableMatrix
class:
julia> M = sympy.ImmutableMatrix([1 2 3; -2 0 4]) # avoid vector of row vector construction
⎡1 2 3⎤
⎢ ⎥
⎣-2 0 4⎦
julia> M.col_del(0)
⎡2 3⎤
⎢ ⎥
⎣0 4⎦
julia> M.row_del(1)
[1 2 3]
For older versions of sympy, the following did not work (using symbolic values as matrix entries without reverting to their PyObjects had shape issues); this should work now:
julia> @syms x
(x,)
julia> sympy.ImmutableMatrix([x 1; 1 x])
⎡x 1⎤
⎢ ⎥
⎣1 x⎦
This is a mess. See issue 6992.
To insert rows or columns, use row_insert
or col_insert
. These operations do not operate in place.
>>> M
[2 3]
>>> M = M.row_insert(1, Matrix([[0, 4]]))
>>> M
⎡2 3⎤
⎢ ⎥
⎣0 4⎦
>>> M = M.col_insert(0, Matrix([1, -2]))
>>> M
⎡1 2 3⎤
⎢ ⎥
⎣-2 0 4⎦
In Julia
:
julia> M = sympy.ImmutableMatrix([2 3])
[2 3]
julia> M = M.row_insert(1, Sym[0 4])
⎡2 3⎤
⎢ ⎥
⎣0 4⎦
julia> M = M.col_insert(0, Sym[1, -2])
⎡1 2 3⎤
⎢ ⎥
⎣-2 0 4⎦
Unless explicitly stated, the methods mentioned below do not operate in place. In general, a method that does not operate in place will return a new Matrix
and a method that does operate in place will return None
.
In Julia
This would be the case for the immutable matrices.
Basic Methods
As noted above, simple operations like addition and multiplication are done just by using +
, *
, and **
. To find the inverse of a matrix, just raise it to the -1
power.
>>> M = Matrix([[1, 3], [-2, 3]])
>>> N = Matrix([[0, 3], [0, 7]])
>>> M + N
⎡1 6 ⎤
⎢ ⎥
⎣-2 10⎦
>>> M*N
⎡0 24⎤
⎢ ⎥
⎣0 15⎦
>>> 3*M
⎡3 9⎤
⎢ ⎥
⎣-6 9⎦
>>> M**2
⎡-5 12⎤
⎢ ⎥
⎣-8 3 ⎦
>>> M**-1
⎡1/3 -1/3⎤
⎢ ⎥
⎣2/9 1/9 ⎦
>>> N**-1
Traceback (most recent call last):
...
ValueError: Matrix det == 0; not invertible.
In Julia
:
In Julia
, we use M1
instead of N
, an exported symbol of SymPy
. Otherise, it all looks similar:
julia> M = Sym[1 3; -2 3]
2×2 Matrix{Sym}:
1 3
-2 3
julia> M1 = Sym[0 3; 0 7]
2×2 Matrix{Sym}:
0 3
0 7
julia> M + M1
2×2 Matrix{Sym}:
1 6
-2 10
julia> M*M1
2×2 Matrix{Sym}:
0 24
0 15
julia> 3*M
2×2 Matrix{Sym}:
3 9
-6 9
julia> M^2
2×2 Matrix{Sym}:
-5 12
-8 3
julia> M^-1
2×2 Matrix{Sym}:
1/3 -1/3
2/9 1/9
Attempting to find the inverse of M1
will error (we suppress its lengthy output)
julia> using Test
julia> @test_throws Exception M1^-1
Test Passed
Thrown: PyCall.PyError
The above (except for the inverses) are using generic Julia
definitions. For immutable matrices, we would have:
julia> M = sympy.ImmutableMatrix([1 3; -2 3])
⎡1 3⎤
⎢ ⎥
⎣-2 3⎦
julia> M1 = sympy.ImmutableMatrix([0 3; 0 7])
⎡0 3⎤
⎢ ⎥
⎣0 7⎦
julia> M + M1
⎡1 6 ⎤
⎢ ⎥
⎣-2 10⎦
julia> M*M1
⎡0 24⎤
⎢ ⎥
⎣0 15⎦
julia> 3*M
⎡3 9⎤
⎢ ⎥
⎣-6 9⎦
julia> M^2
2
2
julia> M^-1
⎡1/3 -1/3⎤
⎢ ⎥
⎣2/9 1/9 ⎦
Similarly, M1^(-1)
would yield an error for the non-invertible matrix
- There is no broadcasting defined for the
SymMatrix
type.
To take the transpose of a Matrix, use T
.
>>> M = Matrix([[1, 2, 3], [4, 5, 6]])
>>> M
⎡1 2 3⎤
⎢ ⎥
⎣4 5 6⎦
>>> M.T
⎡1 4⎤
⎢ ⎥
⎢2 5⎥
⎢ ⎥
⎣3 6⎦
In Julia
:
julia> M = Sym[1 2 3; 4 5 6]
2×3 Matrix{Sym}:
1 2 3
4 5 6
julia> M.T
3×2 Matrix{Sym}:
1 4
2 5
3 6
Matrix Constructors
Several constructors exist for creating common matrices. To create an identity matrix, use eye
. The command eye(n)
will create an n x n
identity matrix:
>>> eye(3)
⎡1 0 0⎤
⎢ ⎥
⎢0 1 0⎥
⎢ ⎥
⎣0 0 1⎦
>>> eye(4)
⎡1 0 0 0⎤
⎢ ⎥
⎢0 1 0 0⎥
⎢ ⎥
⎢0 0 1 0⎥
⎢ ⎥
⎣0 0 0 1⎦
In Julia
:
eye
is not exported so must qualified:
julia> sympy.eye(3)
3×3 Matrix{Sym}:
1 0 0
0 1 0
0 0 1
julia> sympy.eye(4)
4×4 Matrix{Sym}:
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
To create a matrix of all zeros, use zeros
. zeros(n, m)
creates an n x m
matrix of 0
s.
>>> zeros(2, 3)
⎡0 0 0⎤
⎢ ⎥
⎣0 0 0⎦
In Julia
:
- zeros is extended but the method expects a symbolic first argument. Either qualify it:
julia> sympy.zeros(2, 3)
2×3 Matrix{Sym}:
0 0 0
0 0 0
or create a symbolic first value:
julia> zeros(Sym(2), 3)
2×3 Matrix{Sym}:
0 0 0
0 0 0
or use the Julia
constructor:
julia> zeros(Sym, 2, 3)
2×3 Matrix{Sym}:
0 0 0
0 0 0
Similarly, ones
creates a matrix of ones.
>>> ones(3, 2)
⎡1 1⎤
⎢ ⎥
⎢1 1⎥
⎢ ⎥
⎣1 1⎦
In Julia
:
- Similarly with
ones
:
julia> sympy.ones(3, 2)
3×2 Matrix{Sym}:
1 1
1 1
1 1
To create diagonal matrices, use diag
. The arguments to diag
can be either numbers or matrices. A number is interpreted as a 1 x 1
matrix. The matrices are stacked diagonally. The remaining elements are filled with 0
\ s.
>>> diag(1, 2, 3)
⎡1 0 0⎤
⎢ ⎥
⎢0 2 0⎥
⎢ ⎥
⎣0 0 3⎦
>>> diag(-1, ones(2, 2), Matrix([5, 7, 5]))
⎡-1 0 0 0⎤
⎢ ⎥
⎢0 1 1 0⎥
⎢ ⎥
⎢0 1 1 0⎥
⎢ ⎥
⎢0 0 0 5⎥
⎢ ⎥
⎢0 0 0 7⎥
⎢ ⎥
⎣0 0 0 5⎦
In Julia
:
- similarly with
diag
:
julia> sympy.diag(1, 2, 3)
3×3 Matrix{Sym}:
1 0 0
0 2 0
0 0 3
julia> sympy.diag(-1, sympy.ones(2, 2), sympy.Matrix([5, 7, 5]))
6×4 Matrix{Sym}:
-1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 5
0 0 0 7
0 0 0 5
- The first one, could also use
Julia
'sdiagm
function from theLinearAlgebra
package:
julia> diagm(0 => Sym[1,2,3])
3×3 Matrix{Sym}:
1 0 0
0 2 0
0 0 3
Advanced Methods
Determinant
To compute the determinant of a matrix, use det
.
>>> M = Matrix([[1, 0, 1], [2, -1, 3], [4, 3, 2]])
>>> M
⎡1 0 1⎤
⎢ ⎥
⎢2 -1 3⎥
⎢ ⎥
⎣4 3 2⎦
>>> M.det()
-1
In Julia
:
julia> M = Sym[1 0 1; 2 -1 3; 4 3 2]
3×3 Matrix{Sym}:
1 0 1
2 -1 3
4 3 2
julia> M.det()
-1
Let
julia> @syms x
(x,)
julia> A = Sym[x 1; 1 x]
2×2 Matrix{Sym}:
x 1
1 x
The method for det
falls back the sympy method:
julia> det(A)
2
x - 1
There is no reason to, but generic Julia
methods could be used:
julia> out = lu(A)
LU{Sym, Matrix{Sym}, Vector{Int64}}
L factor:
2×2 Matrix{Sym}:
1 0
1/x 1
U factor:
2×2 Matrix{Sym}:
x 1
0 x - 1/x
julia> prod(diag(out.L)) * prod(diag(out.U))
⎛ 1⎞
x⋅⎜x - ─⎟
⎝ x⎠
RREF
To put a matrix into reduced row echelon form, use rref
. rref
returns a tuple of two elements. The first is the reduced row echelon form, and the second is a tuple of indices of the pivot columns.
>>> M = Matrix([[1, 0, 1, 3], [2, 3, 4, 7], [-1, -3, -3, -4]])
>>> M
⎡1 0 1 3 ⎤
⎢ ⎥
⎢2 3 4 7 ⎥
⎢ ⎥
⎣-1 -3 -3 -4⎦
>>> M.rref()
⎛⎡1 0 1 3 ⎤ ⎞
⎜⎢ ⎥ ⎟
⎜⎢0 1 2/3 1/3⎥, (0, 1)⎟
⎜⎢ ⎥ ⎟
⎝⎣0 0 0 0 ⎦ ⎠
In Julia
:
julia> M = Sym[1 0 1 3; 2 3 4 7; -1 -3 -3 -4]
3×4 Matrix{Sym}:
1 0 1 3
2 3 4 7
-1 -3 -3 -4
julia> M.rref()
(Sym[1 0 1 3; 0 1 2/3 1/3; 0 0 0 0], (0, 1))
The first element of the tuple returned by rref
is of type Matrix
. The second is of type tuple
.
Nullspace
To find the nullspace of a matrix, use nullspace
. nullspace
returns a list
of column vectors that span the nullspace of the matrix.
>>> M = Matrix([[1, 2, 3, 0, 0], [4, 10, 0, 0, 1]])
>>> M
⎡1 2 3 0 0⎤
⎢ ⎥
⎣4 10 0 0 1⎦
>>> M.nullspace()
⎡⎡-15⎤ ⎡0⎤ ⎡ 1 ⎤⎤
⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥
⎢⎢ 6 ⎥ ⎢0⎥ ⎢-1/2⎥⎥
⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥
⎢⎢ 1 ⎥, ⎢0⎥, ⎢ 0 ⎥⎥
⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥
⎢⎢ 0 ⎥ ⎢1⎥ ⎢ 0 ⎥⎥
⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥
⎣⎣ 0 ⎦ ⎣0⎦ ⎣ 1 ⎦⎦
In Julia
:
- the list is mapped to an array of vectors, otherwise this is identical:
julia> M = Sym[1 2 3 0 0; 4 10 0 0 1]
2×5 Matrix{Sym}:
1 2 3 0 0
4 10 0 0 1
julia> M.nullspace()
3-element Vector{Matrix{Sym}}:
[-15; 6; … ; 0; 0;;]
[0; 0; … ; 1; 0;;]
[1; -1/2; … ; 0; 1;;]
Columnspace
To find the columnspace of a matrix, use columnspace
. columnspace
returns a list
of column vectors that span the columnspace of the matrix.
>>> M = Matrix([[1, 1, 2], [2 ,1 , 3], [3 , 1, 4]])
>>> M
⎡1 1 2⎤
⎢ ⎥
⎢2 1 3⎥
⎢ ⎥
⎣3 1 4⎦
>>> M.columnspace()
⎡⎡1⎤ ⎡1⎤⎤
⎢⎢ ⎥ ⎢ ⎥⎥
⎢⎢2⎥, ⎢1⎥⎥
⎢⎢ ⎥ ⎢ ⎥⎥
⎣⎣3⎦ ⎣1⎦⎦
In Julia
:
- as with
nullspace
, the return value is a vector of vectors:
julia> M = Sym[1 1 2; 2 1 3; 3 1 4]
3×3 Matrix{Sym}:
1 1 2
2 1 3
3 1 4
julia> M.columnspace()
2-element Vector{Matrix{Sym}}:
[1; 2; 3;;]
[1; 1; 1;;]
Eigenvalues, Eigenvectors, and Diagonalization
To find the eigenvalues of a matrix, use eigenvals
. eigenvals
returns a dictionary of eigenvalue:algebraic multiplicity
pairs (similar to the output of :ref:roots <tutorial-roots>
).
>>> M = Matrix([[3, -2, 4, -2], [5, 3, -3, -2], [5, -2, 2, -2], [5, -2, -3, 3]])
>>> M
⎡3 -2 4 -2⎤
⎢ ⎥
⎢5 3 -3 -2⎥
⎢ ⎥
⎢5 -2 2 -2⎥
⎢ ⎥
⎣5 -2 -3 3 ⎦
>>> M.eigenvals()
{-2: 1, 3: 1, 5: 2}
In Julia
:
julia> M = Sym[3 -2 4 -2; 5 3 -3 -2; 5 -2 2 -2; 5 -2 -3 3]
4×4 Matrix{Sym}:
3 -2 4 -2
5 3 -3 -2
5 -2 2 -2
5 -2 -3 3
julia> M.eigenvals()
Dict{Any, Any} with 3 entries:
3 => 1
5 => 2
-2 => 1
This means that M
has eigenvalues -2, 3, and 5, and that the eigenvalues -2 and 3 have algebraic multiplicity 1 and that the eigenvalue 5 has algebraic multiplicity 2.
To find the eigenvectors of a matrix, use eigenvects
. eigenvects
returns a list of tuples of the form (eigenvalue:algebraic multiplicity, [eigenvectors])
.
>>> M.eigenvects()
⎡⎛ ⎡⎡0⎤⎤⎞ ⎛ ⎡⎡1⎤⎤⎞ ⎛ ⎡⎡1⎤ ⎡0 ⎤⎤⎞⎤
⎢⎜ ⎢⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥ ⎢ ⎥⎥⎟⎥
⎢⎜ ⎢⎢1⎥⎥⎟ ⎜ ⎢⎢1⎥⎥⎟ ⎜ ⎢⎢1⎥ ⎢-1⎥⎥⎟⎥
⎢⎜-2, 1, ⎢⎢ ⎥⎥⎟, ⎜3, 1, ⎢⎢ ⎥⎥⎟, ⎜5, 2, ⎢⎢ ⎥, ⎢ ⎥⎥⎟⎥
⎢⎜ ⎢⎢1⎥⎥⎟ ⎜ ⎢⎢1⎥⎥⎟ ⎜ ⎢⎢1⎥ ⎢0 ⎥⎥⎟⎥
⎢⎜ ⎢⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥ ⎢ ⎥⎥⎟⎥
⎣⎝ ⎣⎣1⎦⎦⎠ ⎝ ⎣⎣1⎦⎦⎠ ⎝ ⎣⎣0⎦ ⎣1 ⎦⎦⎠⎦
In Julia
:
the output is less than desirable, as there is no special
show
methodthe
eigvals
andeigvecs
methods present the output in the manner thatJulia
's generic functions do:
julia> M.eigenvects()
3-element Vector{Tuple{Sym, Int64, Vector{Matrix{Sym}}}}:
(-2, 1, [[0; 1; 1; 1;;]])
(3, 1, [[1; 1; 1; 1;;]])
(5, 2, [[1; 1; 1; 0;;], [0; -1; 0; 1;;]])
compare with
julia> eigvecs(M)
4×4 Matrix{Sym}:
0 1 1 0
1 1 1 -1
1 1 1 0
1 1 0 1
This shows us that, for example, the eigenvalue 5 also has geometric multiplicity 2, because it has two eigenvectors. Because the algebraic and geometric multiplicities are the same for all the eigenvalues, M
is diagonalizable.
To diagonalize a matrix, use diagonalize
. diagonalize
returns a tuple (P, D)
, where D
is diagonal and M = PDP^{-1}
.
>>> P, D = M.diagonalize()
>>> P
⎡0 1 1 0 ⎤
⎢ ⎥
⎢1 1 1 -1⎥
⎢ ⎥
⎢1 1 1 0 ⎥
⎢ ⎥
⎣1 1 0 1 ⎦
>>> D
⎡-2 0 0 0⎤
⎢ ⎥
⎢0 3 0 0⎥
⎢ ⎥
⎢0 0 5 0⎥
⎢ ⎥
⎣0 0 0 5⎦
>>> P*D*P**-1
⎡3 -2 4 -2⎤
⎢ ⎥
⎢5 3 -3 -2⎥
⎢ ⎥
⎢5 -2 2 -2⎥
⎢ ⎥
⎣5 -2 -3 3 ⎦
>>> P*D*P**-1 == M
True
In Julia
:
julia> P, D = M.diagonalize()
(Sym[0 1 1 0; 1 1 1 -1; 1 1 1 0; 1 1 0 1], Sym[-2 0 0 0; 0 3 0 0; 0 0 5 0; 0 0 0 5])
julia> P
4×4 Matrix{Sym}:
0 1 1 0
1 1 1 -1
1 1 1 0
1 1 0 1
julia> D
4×4 Matrix{Sym}:
-2 0 0 0
0 3 0 0
0 0 5 0
0 0 0 5
julia> P*D*P^-1
4×4 Matrix{Sym}:
3 -2 4 -2
5 3 -3 -2
5 -2 2 -2
5 -2 -3 3
julia> P*D*P^-1 == M
true
As lambda
is a reserved keyword in Python, so to create a Symbol called λ, while using the same names for SymPy Symbols and Python variables, use lamda
(without the b
). It will still pretty print as λ.
Note that since eigenvects
also includes the eigenvalues, you should use it instead of eigenvals
if you also want the eigenvectors. However, as computing the eigenvectors may often be costly, eigenvals
should be preferred if you only wish to find the eigenvalues.
If all you want is the characteristic polynomial, use charpoly
. This is more efficient than eigenvals
, because sometimes symbolic roots can be expensive to calculate.
>>> lamda = symbols('lamda')
>>> p = M.charpoly(lamda)
>>> factor(p)
2
(λ - 5) ⋅(λ - 3)⋅(λ + 2)
In Julia
:
- note missing
b
is not needed withJulia
:
julia> @syms lambda
(lambda,)
julia> p = M.charpoly(lambda)
PurePoly(lambda**4 - 11*lambda**3 + 29*lambda**2 + 35*lambda - 150, lambda, domain='ZZ')
julia> factor(p) |> string
"PurePoly(lambda^4 - 11*lambda^3 + 29*lambda^2 + 35*lambda - 150, lambda, domain='ZZ')"
As an aside, we can get prettier output by adjusting how lambda
should print, as follows:
julia> @syms lambda=>"λ"
(λ,)
julia> p = M.charpoly(lambda)
PurePoly(λ**4 - 11*λ**3 + 29*λ**2 + 35*λ - 150, λ, domain='ZZ')
Add an example for jordan_form
, once it is fully implemented.
Possible Issues
Zero Testing
If your matrix operations are failing or returning wrong answers, the common reasons would likely be from zero testing. If there is an expression not properly zero-tested, it can possibly bring issues in finding pivots for gaussian elimination, or deciding whether the matrix is inversible, or any high level functions which relies on the prior procedures.
Currently, the SymPy's default method of zero testing _iszero
is only guaranteed to be accurate in some limited domain of numerics and symbols, and any complicated expressions beyond its decidability are treated as None
, which behaves similarly to logical False
.
The list of methods using zero testing procedures are as followings.
echelon_form
, is_echelon
, rank
, rref
, nullspace
, eigenvects
, inverse_ADJ
, inverse_GE
, inverse_LU
, LUdecomposition
, LUdecomposition_Simple
, LUsolve
They have property iszerofunc
opened up for user to specify zero testing method, which can accept any function with single input and boolean output, while being defaulted with _iszero
.
Here is an example of solving an issue caused by undertested zero. [#zerotestexampleidea-fn]_ [#zerotestexamplediscovery-fn]_
>>> from sympy import *
>>> q = Symbol("q", positive = True)
>>> m = Matrix([
... [-2*cosh(q/3), exp(-q), 1],
... [ exp(q), -2*cosh(q/3), 1],
... [ 1, 1, -2*cosh(q/3)]])
>>> m.nullspace()
[]
In Julia
:
julia> q = sympy.Symbol("q", positive = true)
q
julia> m = Sym[-2*cosh(q/3) exp(-q) 1; exp(q) -2*cosh(q/3) 1; 1 1 -2*cosh(q/3)]
3×3 Matrix{Sym}:
-2*cosh(q/3) exp(-q) 1
exp(q) -2*cosh(q/3) 1
1 1 -2*cosh(q/3)
julia> m.nullspace()
1-element Vector{Matrix{Sym}}:
[-(-2*exp(q)*cosh(q/3) - 4*cosh(q/3)^2 - 1 - 2*exp(-q)*cosh(q/3))/(4*exp(q)*cosh(q/3)^2 + 4*cosh(q/3) + exp(-q)); -(1 - 4*cosh(q/3)^2)/(2*cosh(q/3) + exp(-q)); 1;;]
You can trace down which expression is being underevaluated, by injecting a custom zero test with warnings enabled.
>>> import warnings
>>>
>>> def my_iszero(x):
... try:
... result = x.is_zero
... except AttributeError:
... result = None
...
... # Warnings if evaluated into None
... if result == None:
... warnings.warn("Zero testing of {} evaluated into {}".format(x, result))
... return result
...
>>> m.nullspace(iszerofunc=my_iszero) # doctest: +SKIP
__main__:9: UserWarning: Zero testing of 4*cosh(q/3)**2 - 1 evaluated into None
__main__:9: UserWarning: Zero testing of (-exp(q) - 2*cosh(q/3))*(-2*cosh(q/3) - exp(-q)) - (4*cosh(q/3)**2 - 1)**2 evaluated into None
__main__:9: UserWarning: Zero testing of 2*exp(q)*cosh(q/3) - 16*cosh(q/3)**4 + 12*cosh(q/3)**2 + 2*exp(-q)*cosh(q/3) evaluated into None
__main__:9: UserWarning: Zero testing of -(4*cosh(q/3)**2 - 1)*exp(-q) - 2*cosh(q/3) - exp(-q) evaluated into None
[]
In Julia
:
Is this available??
In this case, (-exp(q) - 2*cosh(q/3))*(-2*cosh(q/3) - exp(-q)) - (4*cosh(q/3)**2 - 1)**2
should yield zero, but the zero testing had failed to catch. possibly meaning that a stronger zero test should be introduced. For this specific example, rewriting to exponentials and applying simplify would make zero test stronger for hyperbolics, while being harmless to other polynomials or transcendental functions.
>>> def my_iszero(x):
... try:
... result = x.rewrite(exp).simplify().is_zero
... except AttributeError:
... result = None
...
... # Warnings if evaluated into None
... if result == None:
... warnings.warn("Zero testing of {} evaluated into {}".format(x, result))
... return result
...
>>> m.nullspace(iszerofunc=my_iszero) # doctest: +SKIP
__main__:9: UserWarning: Zero testing of -2*cosh(q/3) - exp(-q) evaluated into None
⎡⎡ ⎛ q ⎛q⎞⎞ -q 2⎛q⎞ ⎤⎤
⎢⎢- ⎜- ℯ - 2⋅cosh⎜─⎟⎟⋅ℯ + 4⋅cosh ⎜─⎟ - 1⎥⎥
⎢⎢ ⎝ ⎝3⎠⎠ ⎝3⎠ ⎥⎥
⎢⎢─────────────────────────────────────────⎥⎥
⎢⎢ ⎛ 2⎛q⎞ ⎞ ⎛q⎞ ⎥⎥
⎢⎢ 2⋅⎜4⋅cosh ⎜─⎟ - 1⎟⋅cosh⎜─⎟ ⎥⎥
⎢⎢ ⎝ ⎝3⎠ ⎠ ⎝3⎠ ⎥⎥
⎢⎢ ⎥⎥
⎢⎢ ⎛ q ⎛q⎞⎞ ⎥⎥
⎢⎢ -⎜- ℯ - 2⋅cosh⎜─⎟⎟ ⎥⎥
⎢⎢ ⎝ ⎝3⎠⎠ ⎥⎥
⎢⎢ ──────────────────── ⎥⎥
⎢⎢ 2⎛q⎞ ⎥⎥
⎢⎢ 4⋅cosh ⎜─⎟ - 1 ⎥⎥
⎢⎢ ⎝3⎠ ⎥⎥
⎢⎢ ⎥⎥
⎣⎣ 1 ⎦⎦
In Julia
:
Is this available?
You can clearly see nullspace
returning proper result, after injecting an alternative zero test.
Note that this approach is only valid for some limited cases of matrices containing only numerics, hyperbolics, and exponentials. For other matrices, you should use different method opted for their domains.
Possible suggestions would be either taking advantage of rewriting and simplifying, with tradeoff of speed [#zerotestsimplifysolution-fn]_ , or using random numeric testing, with tradeoff of accuracy [#zerotestnumerictestsolution-fn]_ .
If you wonder why there is no generic algorithm for zero testing that can work with any symbolic entities, it's because of the constant problem stating that zero testing is undecidable [#constantproblemwikilink-fn]_ , and not only the SymPy, but also other computer algebra systems [#mathematicazero-fn]_ [#matlabzero-fn]_ would face the same fundamental issue.
However, discovery of any zero test failings can provide some good examples to improve SymPy, so if you have encountered one, you can report the issue to SymPy issue tracker [#sympyissues-fn]_ to get detailed help from the community.
- [#zerotestexampleidea-fn] Inspired by https://gitter.im/sympy/sympy?at=5b7c3e8ee5b40332abdb206c
- [#zerotestexamplediscovery-fn] Discovered from https://github.com/sympy/sympy/issues/15141
- [#zerotestsimplifysolution-fn] Suggested from https://github.com/sympy/sympy/issues/10120
- [#zerotestnumerictestsolution-fn] Suggested from https://github.com/sympy/sympy/issues/10279
- [#constantproblemwikilink-fn] https://en.wikipedia.org/wiki/Constant_problem
- [#mathematicazero-fn] How mathematica tests zero https://reference.wolfram.com/language/ref/PossibleZeroQ.html
- [#matlabzero-fn] How matlab tests zero https://www.mathworks.com/help/symbolic/mupad_ref/iszero.html
- [#sympyissues-fn] https://github.com/sympy/sympy/issues